
Quaternion Rational Activation Functions

Abstract—Quaternion Neural Networks (QNNs) extend tradi-
tional deep learning models by operating in the four-dimensional
quaternion sub-space, offering a compact and naturally expres-
sive framework for representing multidimensional data. At the
heart of neural networks lies the activation function, which intro-
duces non-linearity into the forward process. Due to quaternion
algebra, activation functions known as ”split” activation functions
are predominantly used, as they act on each hypercomplex
component independently. In this paper, we introduce for the
first time two new activation functions based on the Rational
Activation Function (RAF), a class of learnable activation func-
tions characterized by their trainable parameters. Specifically, we
propose one variant where the learnable parameters are shared
across all hypercomplex components, and another activation
function where each component has its own distinct set of
learnable parameters. These new Quaternion Rational Activation
Functions (QRAF) are evaluated across different neural archi-
tectures and tasks, including natural language processing and
image processing and show promising reults.

Index Terms—Quaternion neural networks, Rational activation
function,

I. INTRODUCTION

Quaternion-valued neural networks (QNN) have been an
important research area for the past decade [1] [2], with appli-
cation on different real-life tasks, including image processing
[3] [4], moving object modelling [5] [6] or natural language
processing [7] [8]. More architectures of neural networks
operating in real numbers have been extensively adapted to
quaternion’s algebra [2]. Architectures such as long-short-term
memory (LSTM), transformers, convolutional neural networks
(CNN), and others have their equivalents in quaternion neural
networks [9] [10] [4] with a promising gain in terms of number
of neural parameters as well as in terms of performances
observed.

One of the main challenge in QNN lies with the choice
of activation function. In a same way as for their real-
valued counterpart, activation functions in QNN introduce
non-linearity within the computing process [11], and thus
enhance expressiveness and allows for better data represen-
tation within the hidden vectorial sub-spaces. The choice of
QNN activation functions is non-trivial. As explained in [2],
quaternion activation functions are divided into two parts;
”whole” activation functions and ”split” activation functions.
Per their name, whole activation functions operate on the
whole quaternion, with intra-component interactions due to
the Hamilton dot product. In contrast, split activation functions
operate on each component independently, without regard to
the other ones. Whole activation functions and split activation
functions have been investigated [12] [13]and even if whole
activation functions can reach better results on some tasks,
split activation functions are often preferred, since the former
requires careful training due to numerous singularities that can
significantly affect QNN performances [2] [14]. This reason
led authors to investigate original split quaternion activation

functions which could still retain some aspects of intra-
components interactions within the quaternion.

Activation functions for neural networks in general are
diverse and rooted in various mathematical disciplines— such
as probability, analysis, and statistics— [15]. As highlighted
in [16], interest in activation functions has grown signifi-
cantly in recent years. In particular, activation functions with
learnable parameters have attracted considerable attention in
neural network research [16], as they enhance the ability to
capture hidden patterns, reduce the total number of learnable
parameters, lower memory consumption, and improve gen-
erative performance. Several activation functions, including
the well-known ReLU [17], have shown their effectiveness
across a broad spectrum of real-world related tasks. However,
linear layers alongside with ReLU requires a large number
of parameters, especially in high-dimensional settings such as
word representations (e.g., word embeddings [18]), leading to
high memory usage.

Among recent developments, trainable ”Rational Activa-
tion Functions” (RAF) have emerged as a promising alter-
native [19] to mere ReLU and other non-learnable activation
functions. RAFs are defined as the ratio of two polynomials of
different degrees, with all coefficients treated as learnable pa-
rameters. As demonstrated in [19], such functions can closely
approximate the behaviour of ReLU-based neural networks
and have shown strong performances on various NLP tasks.

QNN with trainable activation functions is a relatively
unexplored area of research. To the authors’ knowledge, only
[11] have evaluated trainable Bessel activation functions on
Quaternion Convolutional Neural Networks (QCNN). How-
ever, their proposed activation function with trainable param-
eters strictly follows the classical split activation structure, as
each component of the quaternion is subjected to the same
activation function without considering algebra properties of
quaternions.

The aim of this paper is to investigate benefit of Quaternion
Rational Activation Functions (QRAF) for different quaternion
neural architectures, and introduce an original QRAF with
component specific dedicated RAF, to instill some aspects of
intra-components interactions within the quaternion learning
phase.

II. QUATERNIONS NEURAL NETWORKS

To evaluate the effectiveness of the proposed quaternion
RAF, different quaternion-valued neural networks are em-
ployed such as QMLP (section II-B), QRNN (section II-C),
QLSTM (section II-D) and QCNN (section II-E) on different
tasks. This section gives first some basics of quaternion
numbers (section II-A) and highlights these models and the
differences with casual real-valued neural networks.



A. Quaternions Algebra

Quaternions are an extension of the complex numbers. A
quaternion q is defined as follows:

q = r + ix+ jy + kz (1)

Where r, x, y and z are real numbers. i, j and k follows the
quaternion fundamental formula:

i2 = j2 = k2 = ijk = −1 (2)

The quaternion space is a four-dimension associative divi-
sion algebra over the real numbers, written H. Quaternions
are composed of two parts, q = r +

−→
S , where r is the

real component and
−→
S = ix + jy + kz is the hypercomplex

component. Quaternions can be represented in the real space
R using the injective morphism:

fR(q) =

r −x −y −z
x r −z y
y z x −y
z −y x r

 (3)

And in the complex space C:

fC(q) =

(
r + ix −y − iz
y − iz r − ix

)
(4)

The conjugate q∗ is an involution of q:

q∗ = r − ix− jy − kz. (5)

The reciprocal of a non-zero quaternion is

q−1 =
q∗

||q||2
(6)

with ||.|| being the euclidean norm. In the H space,
the euclidean norm of a quaternion is defined as ||q|| =√
r2 + x2 + y2 + z2.
According to the Froebenius theorem [20]:

Theorem 1 (Froebenius). All finite-dimensional associative
division algebras over the real numbers are isomorphic to
either the real number space (R), the complex space (C) or
the quaternion space (H).

Using the quaternion fundamental formula, multiplying two
quaternions q1 = r1+ix1+jy1+kz1 and q2 = r2+ix2+jy2+
kz2 is called the Hamilton product, and is define as follows:

q1 ⊗ q2 = r1r2 − x1x2 − y1y2 − z1z2

(r1x2 + x1r2 + y1z2 − z1y2)i
(r1y2 − x1z2 + y1r2 + z1x2)j
(r1z2 + x1y2 − y1x2 + z1r2)k

(7)

The Hamilton product is non-commutative (figure 1) and a
quaternion has a polar decomposition:

q = ||q||.eη.ϕ = ||q||.(cos(ϕ) + η.sin(ϕ)) (8)

Fig. 1. Illustration of the input features (Qin) latent relations learning ability
of a quaternion-valued layer (right) due to the quaternion weight sharing of
the Hamilton product (7), compared to a standard real-valued layer (left) [9]

B. Quaternion Multilayer Perceptron

A Quaternion-valued Multilayer Perceptron (QMLP) oper-
ates in the same way as a real-valued Multilayer Perceptron
(MLP) but within the quaternion algebra. All of its inputs,
weights and biases are quaternion numbers. This subsection
details the QMLP’s forward phase first introduced by [21].
Let M be the number of layers, composed of N nodes, where
N may vary from one layer to another. Let x be the input of
a node. Let Nl be the number of neurons in the layer l, with
1 < l < M . The bias of the neuron n, with 1 < n < Nl, from
the layer l, is bln. Let P be a set of quaternion input patterns
xp with 1 < p < P and tp a label attached to an input xp.
The output γl

n, with γ0
n = xn

p , is given by:

γl
n = α(Sl

n) (9)

where α is a quaternion-valued activation function and with:

Sl
n =

Nl−1∑
m=0

wl
n,m ⊗ γl−1

m + bln (10)

where wl
n,m is a quaternion-valued weight. In QNN, the

split activation function is the most commonly used type of
activation function. Split-type activation functions are defined
as follows:

α(q) = f(r) + if(x) + jf(y) + kf(z) (11)

with f being a real-valued differential function. The split
function is convenient to use for QNN, as the differentiability
of these functions are easily proven, and the computing of
these functions can be done. As we can see from (11), no
Hamiltonian product is involved for the computing of a split-
activation function.



C. Quaternion Recurrent Neural Network

Quaternion Recurrent Neural Network extends the architec-
ture of Recurrent Neural Networks (RNN) to the quaternion
algebra. First introduced in [9], QRNNs have exhibited good
performances for rigid body dynamics [5] or convex optimi-
sation [22]. Like RNNs, QRNNs transmit information across
sequence steps through internal hidden states, enabling them
to capture temporal dependencies and contextual patterns.

Consider a Quaternion Recurrent Neural Network (QRNN)
with a hidden state consisting of H neurons. Let whh, whγ ,
and wγh denote the hidden-to-hidden, input-to-hidden, and
hidden-to-output weight matrices, respectively. The hidden
state hn

tl of neurons n at time step t and layer l is computed
as follows:

ht,l
n = α

(
H∑

m=0

wl
nm,hh ⊗ ht−1,l

m +

Nl−1∑
m=0

wnm,hγ ⊗ γt,l−1
m + bln

)
(12)

With α defined as in (11). The output of the neuron n is

γt,l
n = β

(
Nl−1∑
m=0

wnm,hγ ⊗ ht,l−1
n + bln

)
(13)

With β defined as in (11).

D. Quaternion Long-Short Term Memory

LSTM is a type of RNN that has been firstly introduced
by [23]. LSTM networks are a variant of RNN specifically
designed to effectively model long-term dependencies in se-
quential data. They achieve this through a gating mecha-
nism—comprising input, forget, and output gates — that
regulates the flow of information, determining which data to
retain, discard, or output at each time step.

Quaternion Long-Short Term Memory (QLSTM) has been
investigated by [24]. QLSTMs have been employed for tasks
such as human action recognition [25] or sensor fusion [26].
Let ft, it, ot, ct and ht be the forget, input, output gates, cell
states and the hidden state of a QLSTM cell at time-step t in
this order.

ft = σ(Wf ⊗ xt +Rf ⊗ ht−1 + bf ) (14)

it = σ(Wi ⊗ xt +Ri ⊗ ht−1 + bi) (15)

ct = ft ∗ ct−1 + it ∗ α(Wcxt +Rcht−1 + bc) (16)

ot = σ(Wo ⊗ xt +Ro ⊗ ht−1 + bo) (17)

ht = ot ∗ α(ct) (18)

With σ and α the sigmoid and tanh quaternion split activa-
tions:

σ(q) =
1

1 + e−r
+

1

1 + e−x
i +

1

1 + e−y
j +

1

1 + e−z
k (19)

α(q) =
er − e−r

er + e−r
+

ex − e−x

ex + e−x
i +

ey − e−y

ey + e−y
j +

ez − e−z

ez + e−z
k (20)

Fig. 2. Illustration of the quaternion convolution [9]

E. Quaternion Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of deep
learning architecture particularly effective for analysing grid-
structured data, such as images. They rely on convolutional
layers that apply filters (also known as kernels) to extract local
features like edges, textures, or shapes. As more layers are
stacked, CNNs progressively learn more abstract and complex
representations - starting from basic patterns in early layers
to full object representations in deeper ones. Typically, they
also include pooling layers to downsample spatial dimensions
and fully connected layers for producing final predictions
or classifications. Quaternion Convolutional Neural Networks
(QCNN) have been introduced in [4] and shown good results
for heterogeneous image processing [3], colour image classi-
fication and de-noising tasks [4].

As for previous architecture, QCNN fully operates in the
quaternion algebra. QCNN’s forward phase is defined as
follows: with Sl

a,b the pre-activation output at layer l and at the
indexes (a, b) of the new feature map and w the weight-filter
map of size f ∗ f :

γl
a,b = α(Sl

a,b) (21)

With:

Sl
a,b =

f−1∑
c=0

f−1∑
d=0

wl ⊗ γl−1
a+c,b+d (22)

And α defined as in (11).

III. REAL- AND QUATERNION-VALUED RATIONAL
ACTIVATION FUNCTIONS

The previous section described the quaternion-valued neural
networks employed during the experiments using the hitherto
proposed real-valued RAF (section III-B) and the proposed
quaternion-valued RAF (section III-C).

A. Background In Learnable Activation Functions

Activation functions can be broadly categorised into two
types: non-trainable and trainable. As the name suggests, non-
trainable activation functions perform fixed transformations on
the input data and remain unchanged throughout the learning
process. In contrast, trainable activation functions incorporate
learnable parameters that are adjusted during training, typically
through back propagation using gradient descent. One of



the earliest examples of such functions is the Adjustable
Generalized Sigmoid (AGSig) [27], defined as:

AGSig(x) =
α

1 + exp(−βx)
(23)

where α and β are learnable parameters. Since then, numerous
trainable activation functions have been proposed, many of
which are extensions of traditional non-trainable functions.
Notable examples include the sigmoidal selector [28] and the
Flexible ReLU [29].

B. Rational activation functions

Rational Activation Functions (RAFs), introduced by [19],
are defined as follows:

F (x) = P (x)
Q(x) =

∑rp
i=0 aix

i

1+|∑rq
j=1 bjxj| , (24)

where rp and rq denote the degrees of the numerator and
denominator polynomials, respectively, with the constraint
rp ≥ rq . The coefficients ai and bj in the polynomials P (x)
and Q(x) are learnable parameters, optimised during train-
ing. Incorporating such trainable components allows neural
networks to more effectively capture complex features. Net-
works employing these activation functions are referred to as
rational neural networks. As demonstrated in [19], RAFs can
approximate any ReLU-based neural network. The polynomial
degrees rp and rq serve as hyper-parameters that can be tuned
for specific tasks. RAFs have shown strong performances
on various benchmark tasks, including MNIST classifica-
tion [19] and natural language processing architectures such as
attention-based transformers [30]. To this author’s knowledge,
RAF have never been evaluated as activation functions in
QNN.

C. Quaternion Rational Activation Functions

This subsection introduces two QRAF for QNN. The first
is modelled on the split activation function structure:

QF (q) = F (r) + iF (x) + jF (y) + kF (z) (25)

with F a RAF defined as in (24). The second QRAF intro-
duced has component specific RAF:

QCS(q) = F1(r) + iF2(x) + jF3(y) + kF4(z) (26)

with F1, F2, F3 and F4 RAFs defined as in (24), each having
the same polynomial degrees. In the following, function (25)
will be referred as QRAF and (26) as Component-Specific
Quaternion Rational Activation Function (CQRAF).

D. Intra-component Interactions

As mentioned in the introduction of this paper, our goal is
to introduce aspects of intra-component interactions during the
quaternion learning process. This subsection provides justifi-
cation for the presence of such interactions in our proposed
CQRAF. Let ∆l

n denote the gradients of the hidden layer
parameters. Following [31], we have:

∆l
n =

N l+1∑
h=1

ω∗l+1

h,n ⊗ (∆l+1
h ⊙ α′(Sl+1

n )) (27)

Substituting (26) into (27), we obtain:

∆l
n =

N l+1∑
h=1

ωl+1∗
h,n ⊗

∆l+1
h ⊙


F ′
1

(
Sl+1
hr

)
F ′
2

(
Sl+1
hi

)
F ′
3

(
Sl+1
hj

)
F ′
4

(
Sl+1
hk

)

 (28)

Expanding the Hadamard product in (28), ∆l
n can be

expressed as:

∆l
n =

N l+1∑
h=1

ωl+1∗
h,n ⊗


(∆l+1

h )r · F ′
1

(
Sl+1
hr

)
(∆l+1

h )i · F ′
2

(
Sl+1
hi

)
(∆l+1

h )j · F ′
3

(
Sl+1
hj

)
(∆l+1

h )k · F ′
4

(
Sl+1
hk

)
 (29)

By expanding the Hamilton product (which involves non-
trivial notation), we observe that each of the derivatives
F ′
1, F ′

2, F ′
3, and F ′

4 contributes to every component of the
resulting quaternion gradient ∆l

n. This supports our claim
that CQRAF introduces intra-component interactions within
quaternion neural networks (QNNs).

E. Functional Properties and Requirements Satisfaction
This subsection briefly outlines the theoretical justifications

underlying QRAF and CQRAF. [12] presents a set of re-
quirements for activation functions, which are typically best
satisfied by whole activation functions. Our proposed CQRAF
fulfills several of these requirements, specifically:

1: Sufficient non-linearity,
2: Suitability for gradient-based optimization,
3: Proper gradient flow with maximized sensitivity.
All three of these criteria are satisfied by both QRAF and

CQRAF. While [12] also highlights requirements that are
generally unattainable by split-type activation functions, our
CQRAF, under the condition that rp = rq+1, can also satisfy
a relaxed version of Requirement 5: preservation of the ratios
between the respective quaternion components.

This relaxed requirement can be derived using partial frac-
tion decomposition. Let q be a quaternion as defined in (1)
with non-zero components, and let QCS denote a CQRAF
defined as in (1). We can express the ratio t = y

x and evaluate
this ratio through QCS(q) as follows:

T =
F3(y)

F2(x)
=

P3(y)

Q3(y)
· Q2(x)

P2(x)
=

P3(y)

Q3(y)
· x ·Q2(x)

x · P2(x)

= (y + S2(y)) ·
1

x
· (θ + S3(x))

Here, S2(y) and S3(x) represent the sum of rational func-
tions obtained from the partial fraction decomposition over
R of P3(y)

Q3(y)
and Q2(x)

P2(x)
, respectively. The terms y and the

real constant θ are the quotients resulting from the Euclidean
division during decomposition. We can then simplify:



T =
θy

x
+ o

(y
x

)
≃ θy

x
= θ · t (30)

In summary, QRAF and CQRAF satisfy the three primary
activation function requirements described above. Further-
more, under the condition (rp = rq + 1), our CQRAF is
also capable of approximately satisfying a relaxed version of
the fifth requirement: the preservation of the ratio between
corresponding quaternion components. This behavior under-
scores CQRAF’s ability to maintain proportional relationships
among quaternion components, a property rarely achieved by
split-type activation functions according to [12].

IV. EXPERIMENTAL PROTOCOL

This section describes the experimental protocol as well as
the models employed during the experiments. The multiple
QNNs architectures presented before all have their usual
activation functions. This subsection introduces alternatives
architectures based on QRAF and CQRAF introduced in
subsection III-C.

A. Proposed QMLP

• QMLPRelu is a QMLP composed of 3 quaternion linear
layers of size [4, 40], [40, 40] and [40, 4] respectively.
The activation function used for each layer is the
Rectified Linear Unit (ReLU). This model has 564
learnable parameters.

• QMLPQRAF is composed like QMLPRelu but with
QRAF for activation functions instead of ReLU. The
degrees of those QRAF are rp = 5 and rq = 4. This
model has 584 learnable parameters.

• QMLPCQRAF is composed like QMLPRelu but with
CQRAF for activation functions instead of ReLU. The
degrees of those CQRAF are rp = 5 and rq = 4. This
model has 644 learnable parameters.

B. Proposed QRNN

• QRNNTanh is composed of a data normalisation layer,
a QRNN with an input size of 252 and a hidden state of
size 80. The activation function used is the Hyperbolic
Tangent (Tanh). A linear layer of size [80, 8] with a
Softmax activation function is added for classification.
This model has 27380 learnable parameters.

• QRNNQRAF is composed like QRNNTanh but with
QRAF for activation functions instead of Tanh. The
degrees of those QRAF are rp = 5 and rq = 4. This
model has 27390 learnable parameters.

• QRNNCQRAF is composed like QRNNTanh but with
CQRAF for activation functions instead of Tanh. The
degrees of those QRAF are rp = 5 and rq = 4. This
model has 27540 learnable parameters.

C. Proposed QLSTM

• QLSTMTanh/Sig is composed of a data normalisation
layer, a QLSTM with an input size of 252 and a hidden
state of size 80. The activation function used is Tanh
and the Sigmoid function, as described in equations
(14), (15), (16), (17) and (18). A linear layer of size
[80, 8] with a Softmax activation function is added
for classification. This model has 47460 learnable
parameters.

• QLSTMQRAF is composed like QLSTMTanh/Sig but
with QRAF for activation functions instead of Tanh and
Sigmoid. The degrees of those QRAF are rp = 5 and
rq = 4. This model has 47480 learnable parameters.

• QLSTMCQRAF is composed like QLSTMTanh/Sig but
with CQRAF for activation functions instead of Tanh and
Sigmoid. The degrees of those QRAF are rp = 5 and
rq = 4. This model has 47540 learnable parameters.

D. Proposed QCNN

• QCNNRelu is a stacked QCNN designed for 4-channel
input data of size (4, 32, 32). It begins with a quaternion
convolutional layer ([4,6] channels, 5×5 kernel, stride 1)
followed by a ReLU activation and 2×2 max pooling,
reducing the spatial dimensions to [6, 14, 14]. A second
quaternion convolutional layer ([6, 16] channels, 5×5
kernel) with ReLU and pooling further reduces the
feature map to [16, 5, 5]. The output is flattened to
a 400-dimensional vector and passed through three
quaternion linear layers of sizes [400, 120], [120,
84], and [84, 40], each followed by ReLU activations
except the final layer. This model has 16104 learnable
parameters.

• QCNNQRAF is composed like QCNNRelu but with
QRAF for activation functions instead of ReLU. The
degrees of those QRAF are rp = 5 and rq = 4. This
model has 16144 learnable parameters.

• QCNNCQRAF is composed like QCNNRelu but with
CQRAF for activation functions instead of ReLU. The
degrees of those QRAF are rp = 5 and rq = 4. This
model has 16264 learnable parameters.

The choice made to set all of the QRAF and CQRAF
degrees to the same rp = 5 and rq = 4 is motivated by [30],
where it has shown promising results with transformers.

V. EXPERIMENTAL SETUPS

This section outlines the experimental setups used to com-
pare traditional QNN architectures with QNN based on QRAF
and QNN based on CQRAF. The aim of these experiments is
not to reach state -of-the-art performances, but to compare the
performances of the simple architectures introduced before.
As established in [32] and [33], testing original learnable
activation functions for neural networks on small architectures
is common practice, and allows a better comprehension and
insight on the inner workings of learnable activation functions.



A. Chaotic Function Approximation

The objective of this experiment is to compare the perfor-
mances of QRAF CSQRAF and split quaternion activation
functions. In this experiment, the task involves predicting the
future states of a chaotic system based on its past states.
The chaotic system in question is modelled by the differential
equations of Chua’s circuit, defined as:

u = (x(t), y(t), z(t))

and
∂u

∂x
= (α · (y − x− f(x)), x− y + z, −β · y)

with f(x) = C · x+
1

2
(R− C)(|x+ 1| − |x− 1|)

α = 15.395, β = 28, R = −1.143, and C = −0.714

Chua’s chaotic system prediction has been used to evaluate
QNNs architectures in [34]. The simulation time t spans from
0 to 10 seconds, with a time step of 1 × 10−1 seconds.
Solutions to this system of differential equations were com-
puted using the ode45 solver [35] from the SciPy Python
package. The prediction task consists of using each state at
even time steps t ≡ 0 [2] : (xt, yt, zt) to forecast the state at
the subsequent odd time step t ≡ 1 [2] : (xt+1, yt+1, zt+1).

To process these states using a quaternion-valued neural
network, a zero was prepended to each state vector, resulting
in the input vectors X = (0, xt, yt, zt) and corresponding
targets Y = (0, xt+1, yt+1, zt+1). The architectures used for
the quaternion-valued neural network are the three QMLP
described in Section IV-A. For the training process, the hyper-
parameters are set as follows: training was conducted across
1000 epochs, with a learning rate set as 5e−5 and a batch
size of 1. The optimiser used is SGD and the loss function
employed is the L1 loss. Results are shown and discussed in
VI-A.

B. Classification of Noisy Spoken Dialogues

This experiment involves a conversation classification task
based on spoken dialogues from the DECODA corpus. The
task focuses on the automatic analysis of telephone con-
versations [36] between a customer and an agent at the
call centre of the Paris public transport authority (RATP)
[37]. The DECODA corpus comprises 1,242 French-language
agent/customer telephone conversations, representing approx-
imately 74 hours of audio. These recordings were transcribed
using the LIA-Speeral Automatic Speech Recognition (ASR)
system [38] in order to preserve the noisy, real-world condi-
tions of spoken dialogue. Each conversation was also manually
transcribed and annotated with a single thematic label, chosen
from a set of eight possible categories corresponding to the
main topic of the exchange. The dataset is partitioned into
training (730 conversations), development (171 conversations),
and test (321 conversations) subsets. LIA-Speeral, a high-
error ASR system, was intentionally used to maintain realistic
speech conditions, thereby enabling a more effective assess-
ment of the robustness of QRAF in the presence of noisy
input during model training. A 3-gram language model (LM)
is created by adapting a base LM using the transcriptions
from the training set. Automatic transcriptions yield word error

rates (WERs) of 33.8% on the training set, 45.2% on the
development set, and 49.0% on the test set. These high error
rates are primarily attributed to speech disfluencies from casual
users and challenging acoustic conditions in environments
such as metro stations and streets. DECODA has served as
a benchmark dataset for evaluating quaternion neural network
architectures. QCNN [9], QMLP [7], and Quaternion Encoder-
decoder [39] all have been evaluated on DECODA’s classifi-
cation. The embedding size was set to 252. The architectures
used for the quaternion-valued neural networks are the three
QRNN described in Section IV-B and the three QLSTM
described in Section IV-C. For the training process, the hyper-
parameters are set as follows: training was conducted across
100 epochs, with a learning rate set as 6.25e−6 and a batch
size of 8. The optimiser used is the Adam optimiser and the
loss function employed is the cross-entropy. Results are shown
and discussed in VI-B.

C. Image Classification
This task focuses on the CIFAR10 [40] dataset. The CIFAR-

10 dataset consists of 60,000 colour images, each with a reso-
lution of 32×32 pixels and three RGB colour channels. These
images are evenly distributed across 10 distinct object classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck, with 6,000 images per class. CIFAR10 has also been
previously used to test Deep Quaternion Neural Networks [41].
Since quaternions are hyper-complex numbers consisting of
one real and three distinct imaginary components, quaternions
are well-suited for representing three- or four-dimensional
feature vectors—such as the (R, G, B) colour channels in
image processing. QNN can model and learn internal depen-
dencies between these components using the Hamilton product
[2]. The architectures used for the quaternion-valued neural
network are the three QCNN described in Section IV-D. As
each image is coded according to (R, G, B), each pixel was
coded as a pure quaternion, which is a quaternion with a zero
real part:

qpure = 0 + ix+ jy + kz (31)

For the training process, the hyper-parameters are set as
follows: training was conducted across 20 epochs, with a
learning rate set as 1.00e−3 and a batch size of 4. The
optimiser used is SGD and the loss function employed is the
cross-entropy. Results are shown and discussed in VI-C.

VI. RESULTS

A. Chaotic Function Approximation

TABLE I
LOSS VALUE AFTER TRAINING OF THE THREE QMLP FOR THE CHAOS

FUNCTION APPROXIMATION.

Model Loss
QMLPRelu 27.209
QMLPQRAF 15.608
QMLPCQRAF 9.824

Table IV presents the final training losses of three QMLP
trained to approximate a Chuas chaotic function, each differing
in the activation function used. The model using standard



ReLU activation (QMLPRelu) achieves the highest loss at
27.209 points, indicating limited effectiveness in capturing the
complex dynamics of the target function. Replacing ReLU
with a QRAF significantly improves performance, reducing
the loss to 15.608 points. The best results are obtained
with the CQRAF. Indeed, QMLPCQRAF yields the lowest
loss of 9.824 points. Regarding the number of parameters,
QMLPQRAF reach half the loss value of QMLPRelu with only
3.54% more parameters and QMLPCQRAF reach a third of
QMLPRelu’s loss with only 14.18% more parameters. These
results highlight the importance of using component-specific
activation functions, which are specifically tailored to quater-
nion representations. Indeed, they demonstrate that CQRAF
substantially enhances the network’s ability to model chaotic
behaviour, outperforming both conventional and quaternion-
specific alternatives. These promising results for a simple MLP
architectures led us to test other types of QNN.

B. Classification of Noisy Spoken Dialogues

TABLE II
RESULTS OF THE DECODA CLASSIFICATION TASK FOR THE THREE

QRNN.

Model Train acc Test acc Dev acc Loss
QRNNTanh 1.697 70% 69% 64%
QRNNQRAF 1.674 71% 71% 66%
QRNNCQRAF 1.638 74% 74% 70%

Table II reports the performances of our three QRNN on the
DECODA classification task, comparing these architectures in
terms of training loss and classification accuracy on the train,
test, and development sets. The baseline model, QRNNTanh,
which uses the standard hyperbolic tangent activation, achieves
a training loss of 1.697 points with corresponding accuracies
of 70% (train), 69% (test), and 64% (dev). Replacing Tanh
with the QRAF in QRNNQRAF leads to a slight improve-
ment across all metrics, reducing the loss to 1.674 points and
achieving up to 71% accuracy. The best-performing model
is QRNNCQRAF , with the CQRAF and achieves the lowest
loss with 1.638 points alongside the highest accuracies—74%
on both the test and development sets, and 70% on the dev
set. Regarding the number of parameters, QRNNQRAF and
QRNNCQRAF have 0.036% and 0.58% more parameters of
QRNNTanh respectively. These results highlight the benefit of
using component-specific activations as CQRAF, which con-
sistently improves the model’s generalisation and classification
performances in real-world, disfluent speech scenarios of the
the DECODA corpus.

TABLE III
RESULTS OF THE DECODA CLASSIFICATION TASK FOR THE THREE

QLSTM.

Model Loss Train acc Test acc Dev acc
QLSTMTanh/Sig 1.964 49% 47% 39%
QLSTMQRAF 2.068 63% 60% 47%
QLSTMCQRAF 2.067 66% 66% 62%

Table III presents the performances results of three QLSTM
on the DECODA classification task, each using a different

activation function. The baseline model, QLSTMTanh/Sig ,
which employs the conventional Tanh and Sigmoid activations,
achieves the lowest training loss at 1.964 points, but its
classification accuracy is limited—49% on the training set,
47% on the test set, and 39% on the development set. In
contrast, QLSTMQRAF , which uses the QRAF, shows a mod-
est increase in training loss at 2.068 points but significantly
improves accuracy to 63%, 60%, and 47% on the train, test,
and development sets, respectively. The best performance is
obtained with QLSTMCQRAF , which incorporates CQRAF,
maintaining a similar loss at 2.067 points while achieving the
highest accuracy across all sets: 66% on both train and test,
and 62% on the development set. Regarding the number of
parameters, QLSTMQRAF and QLSTMCQRAF have 0.042%
and 0.16% more parameters of QLSTMTanh/Sig respec-
tively. These results suggest that while traditional activations
may minimise loss in a QLSTM framework, component-
specific activations — as CQRAF—offer superior classifica-
tion performance and generalisation in the context of disfluent
and noisy real-world speech data.

C. Image Classification

TABLE IV
LOSS VALUE AND CLASSIFICATION ACCURACY AFTER TRAINING OF THE

THREE QCNN FOR THE CIFAR10 IMAGE CLASSIFICATION.

Model Loss Accuracy
QCNNRelu 650.299 56.398%
QCNNQRAF 555.596 60.41%
QCNNCQRAF 517.481 62.09%

Table IV presents the training loss and classification accu-
racy of the three QCNN introduced in IV-D evaluated on
the CIFAR-10 image classification task, each employing a
different activation function. The baseline model, QCNNRelu,
which uses the standard ReLU activation, shows the highest
loss at 650.299 points and the lowest accuracy at 56.40%,
indicating limited ability to exploit the quaternion structure
of the data. The introduction of a QRAF in QCNNQRAF

results in a notable performance boost, with a reduced loss of
555.596 points and improved accuracy of 60.41%. The best
results are obtained with QCNNCQRAF , which incorporates a
QRAF and achieves the lowest loss at 517.481 and the highest
classification accuracy at 62.09%. Regarding the number of
parameters, QCNNQRAF and QCNNCQRAF have 0.24% and
0.99% more parameters of QCNNRelu respectively. These
findings confirm that quaternion-specific activations, particu-
larly CQRAF, enhance the network’s representational capacity
and learning efficiency, leading to superior performance on
challenging visual recognition tasks like CIFAR-10.

VII. CONCLUSIONS

Conclusions: Experiments across different tasks, such as
conversation classification, image classification and chaotic
function predictions have shown promising results for QRAF
and CQRAF. QRAF and CQRAF have almost always out-
performed the classically used activation functions, such as
ReLU, Tanh and Sigmoid. Especially, CQRAF have exhib-
ited high prediction and classifications capacity across all



the experiments. As stated in VI-A, VI-B and VI-C these
better performances are reached with a negligible increase in
learnable parameters for the different QNN.
Future Works: Future works will focus on other architectures
and tasks, such as attention-based quaternion neural networks.
These works will also investigate the impact of varying degrees
of QRAF, as this paper focused on testing component-specific
rational activation functions. Other works will investigate
parameters reduction for QNN using QRAF, by trying to
reduce the size of neural layers by leveraging QRAF. Further
theoretical perspective on this is offered through Sobolev
spaces. Extending the framework established by [19], we are
inclined to think that certain convergence properties can be
transferred to the quaternion domain by treating quaternions
as elements in a 4-dimensional real space.
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