Exponential-Based Rational Activations Functions

Abstract—One of the persistent challenges in designing neural
network models—particularly in the field of natural language
processing (NLP)—is managing the large number of learnable
parameters, which often leads to increased computational costs
and a greater risk of overfitting. In this paper, we propose a novel
approach to address this issue by leveraging Rational Activation
Functions (RAFs), including both previously proposed variants
and a new class of non-linear RAFs with learnable parameters.
These functions are designed to enhance the representational
power of neural networks while significantly reducing their ar-
chitectural complexity. We demonstrate that RAFs can effectively
emulate the behavior of deeper feed-forward neural networks,
thereby enabling a reduction in the number of hidden layers
required for a given task. This reduction translates into a lower
total number of learnable parameters without compromising
performance. Our method is evaluated on two fronts: first,
through a series of function approximation experiments that
highlight the expressiveness of RAFs; and second, on real-
world NLP tasks involving text classification in noisy, spoken
dialogue environments and an image classification task. The
results confirm that networks incorporating RAFs maintain high
accuracy while benefiting from increased efficiency and robust-
ness. This work suggests that RAF-based architectures offer a
promising direction for building lightweight, high-performance
models, particularly in resource-constrained or real-time NLP
applications.

I. INTRODUCTION

Today, transformer neural network models have been mas-
sively developed for a wide variety of real-life related tasks
such as image recognition [29], natural language process-
ing [10] (NLP), voice generation [26], or medical imag-
ing [44]. Generative models based on transformer architec-
tures [42] became state-of-the-art on different NLP related
tasks.

Therefore, transformer based models have demonstrated
their powerful capabilities to generate relevant data and to
express latent and complex grammatical and semantic struc-
tures during the learning process of large language models
(LLM) [38]. LLMs based on transformers are now state-of-
the-art for a wide range of NLP tasks, such as chatbot [12],
translation [28] or sentiment analysis [40]. One of the main
issues with such large neural networks architectures is that
training of those models [39] is time and memory consuming.
Therefore, searching for original lightweight architectures with
competitive performances became an important challenge in
neural networks [23].

These transformers employ both linear and non-linear trans-
formations during the learning process to code latent words de-
pendencies and semantic structures contained in the language
by focusing on specific sub-contexts contained in the sequence
of words or signals. Among the non-linear transformations
required to learn these latent informations, activation functions

are fundamental and have to be efficient in terms of both
processing time, memory usage and the ability to separate
non-linear data on the features sub-space.

A wide range of activation functions based on different
mathematics fields have already been proposed such as prob-
ability, analysis or statistics [43]. As stated in [2], the interest
for activation functions has increased during the recent years.
More precisely, activation functions with learnable parameters
have been a strong subject of interest for research in neural
networks [2] to better capture hidden relations, reduce the
number of learnable parameters and the memory used, as
well as increasing the performances observed during the
generative process. Different activation functions have already
been proposed and have demonstrated their ability on different
real-life tasks such as the Relu function [33]. The number of
parameters required to learn linear layers associated with the
Relu function is potentially huge since the word representation
(word embeddings [22] for example) is large and requires large
memory.

Among novel activation functions, trainable activation func-
tions called “Rational Activation Functions” (RAFs) recently
developed [7] have shown promising results on different NLP
related tasks. These functions are a quotient of two polynomial
functions of different degrees, where each coefficient is a
learnable parameter. [7] has demonstrated that those functions
are able to approximate Relu-based neural networks very well.

The aim of this paper is to introduce novel architectures
with very few learnable parameters based on rational activation
functions and with good performances and to propose novel
activation functions based on rational activation functions that
reduce both the number of parameters required for learning
and reach promising results knowing the small size of the
neural network. We then evaluate the effectiveness of the
proposed activation functions on: functions approximation
tasks, noisy spoken conversations classification and images
classification, using small neural networks models to better
assess the effect of specific activation functions on the model’s
results. The goal is not to reach state-of-the art accuracies on
these tasks, but to point out that a rational activation function
with a dedicated non-linear transformation (exponential, etc.)
allows the neural based system to improve the performances
observed, while having fewer parameters than ReLLU based-
ones.

II. NEURAL NETWROKS

A. Multilayer Perceptron (MLP)

MLP have been first introduced in 1957 [17] and constitute
the skeleton of modern neural networks architectures. In this
section, we will briefly describe it’s forward phase. For a MLP



made of M layers of N nodes of neurons, x being the input
to a node and N; being the number of nodes present in the
layer [, with 1 < [ < M. b}, is the bias of the neuron n
with 1 < n < N;. With a given set of P inputs pattern x,
(I < p < P), a set of t, labels associated to each x,, the
output v, (7% = ;) of the neuron n of the layer [ is defined
as follows:

v = a(s)) (1)
With
Ni_1
sh=> wh, x4t )
m=0

and « being the activation function. Further explanations
about activation functions will be developed in Sectionlll
below.

B. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is a type of deep
learning architecture particularly effective for analysing grid-
structured data, such as images. They rely on convolutional
layers that apply filters (also known as kernels) to extract local
features like edges, textures, or shapes. As more layers are
stacked, CNNss progressively learn more abstract and complex
representations — starting from basic patterns in early layers
to full object representations in deeper ones. Typically, they
also include pooling layers to downsample spatial dimensions
and fully connected layers for producing final predictions or
classifications.

CNN'’s forward phase is defined as follows: with S(ll,b the
pre-activation output at layer [ and at the indexes (a, b) of the
new feature map and w the weight-filter map of size f * f:

%lz,b = 04(531,1)) 3)
With:
f-1f-1
Sep = Z Z W' X Yot baa “)
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And « defined as in (1).

III. ACTIVATION FUNCTIONS
A. Background

Activation functions play a crucial role in neural networks.
Indeed, activation functions introduce non-linearity within the
neural network since these functions contain non-linear com-
ponents. Originally, activation functions are used to introduce
non-linear behaviour in the data processing during the learning
process of neural networks. Some of the most commonly
employed activation functions are the Rectified Linear Unite
(ReLU) [24] function, the Gaussian Linear Unite (GeLU) [21]
function, the sigmoid [31] or the hyperbolic tangent [41].
Activation functions can be defined as follows:

Let E be a real vector space, let = and 6 be vectors in E™
and 3 be a scalar in E. The activation function F' : £ — F
operates the transformation:

F (Z 2 + 5) = y; 5)

i=1

One can notice that activation functions, and more generally
neural networks, aren’t necessarily defined on a real space, as
there exist complex [36] and quaternions [30] neural networks
with dedicated activation functions. It is crucial for a neural
network to be able to approximate solutions separated with
complex hyper-plans in non-linear sub-spaces encountered
in real-life related tasks. Another requirement of activation
functions is their differentiability. It is a required property for
activation functions to be able to be differentiated to compute
the gradient descent algorithm (backward process).

Activation functions can be divided into two main cate-
gories: non-trainable and trainable activation functions. As
their name underlines, non-trainable activation functions apply
transformations to incoming data without being altered during
the learning process. Conversely, trainable activation functions
are composed of learnable parameters and suit to the data
during the learning process as those learnable parameters
are computed during the backward process (gradient descend
algorithm). One of the first trainable function introduced in
neural networks was the Adjustable Generalized Sigmoid
[16]:

«

AGSig(z) = T cap(—pa)’

(6)
with « and [ are the learnable parameters. Over the years,
other trainable activation functions have been introduced, often

based on previous non-trainable activation functions, such as
Sigmoidal Selector [34] or Flexible ReLU [32].

B. Rational Activation Functions

Rational Activation Functions (RAF) have been introduced
by [7] and are defined as follows:

P(x) _ Z:io i’
Q(x) 1+ |35L,bjai|’

where 7, and r, are the polynomial degrees of the numerator
and denominator respectively and 7, > r,. Each a; and b;
coefficient of the P and @) polynomial functions is a learnable
parameter. The use of functions with learnable parameters
allows the neural network to better capture different features
within the model. Neural networks using these functions
are called rational neural networks. These networks have
been demonstrated to be able to approximate any ReLU net-
works [7]. The degree of both r,, and r, are hyper-parameters
of the neural network. These polynomial activation functions
have shown promising results during different benchmark tasks
such as MNIST classification [7] and NLP related architectures
such as attention-based transformers [14].

Frar(z) = )



C. Proposed non-linear Rational Activation Function

As detailed in section III-A, different mere non-trainable
activation functions are based on the exponential and
logarithm functions, such as Tanh, Sigmoid, Softmax or
LogSoftmax. Following this design, the trainable activation
functions proposed first were based on these non-trainable
functions, such as sigmoidal selector [34] or Flexible
ReLU [32]. Rational activation functions (equation 7) are not
exponential or logarithm based. Therefore, these functions
are not able to well express non-linear hidden sub-spaces.
To address this, we propose original rational activation
functions based on exponential and logarithm functions
to represent non-linear informations contained in datasets
defined there-after with the scalar hyper-parameter .

Exponential Rational Activation Function: This function
consider non-linear components contained in datasets by
introducing exponential composed function on RAF.

. e
Feap(Aa) = F(e) = i) ®)

Hyperbolic Sinus Rational Activation Function: The paper
also proposes a linear combination of exponential transforma-
tions for RAF.

: P(sinh(\z
Fynn(z) = F(sinh(\z)) = GEmEas, ©)
with the hyperbolic sinus function:
Ax _ ,—Ax
sinh(\z) = < 26 (10)

Inverse Hyperbolic Sinus Rational Activation Function:
This activation function introduces logarithm (exponential
inverse function) to study the impact of inverse non-linear
function.

P (arsinh(x))

Fa_rsinh(x) = F(arsinh(m)) = m, (11)
with the inverse hyperbolic sinus function:
arsinh(z) = log(z + V1 + 22), (12)

Knowing the structure of rational activation functions, the
assumption of this paper is first that with a set of well
selected learnable polynomial coefficients, the rational ac-
tivation functions can replace the usual linear layers with
Relu activation functions and drastically reduce the number of
learnable parameters of the neural network models; the second
hypothesis of the paper is the efficiency and robustness of our
customs non-linear rational activation functions described in
(8), (9) and (10).

D. Approximation Capability

This section provides a formal justification for the ability
of our exponential-based RAF to approximate ReLU-based
neural networks, while avoiding unnecessary technical detail.
For a concise argument, the demonstration of the capacity of
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Fig. 1. Graph with exp(% * ) in red, sinh(% * ) in blue and arsinh(% *T)
in green.

such rational activation functions to approximate ReLU neural

networks can be directly derived from the appendix of [7],

particularly for Fynn and Figgnn. Specifically, the proof of

Lemma 1 in [7], which is based on results from [5], can be

adapted to continuous odd functions such as sinh and arsinh.
For a more rigorous approach:

Lemma 1 in [7] states:

Lemma 1. Let 0 < € < 1. There exists a rational network
R:[-1,1] = [-1,1] of size O(log(log(1/€))) such that:

[|R — ReLU||oo := max,c|—1 1| R(7) — ReLU(z)| < € (13)

Moreover, no rational network of size smaller than

Q(log(log(1/€))) can achieve this.

The proof of this lemma is provided in the appendix of [7]
and is based on Equation (3.3) from [5]. Without delving into
the details of Zolotarev numbers, we can derive analogous
properties from [5], since its approach involves working with
intervals of the form [—b, —al, [a,b] where 0 < a < b < co.

Let F' denote either the hyperbolic sine function as defined
in (10) or the inverse hyperbolic sine function as in (12).
Since F' is a continuous odd function, the transformed intervals
[F(=b), F(—a)] and [F(a),F(b)] become [—F(b),—F(a)]
and [F(a), F(D)], respectively. These can be rewritten as
[-B,—A], [A, B] with F(a) = A and F(b) = B.

Because applying F' preserves the structure of the original
intervals, the subsequent development in [5] remains valid
under this transformation. This allows us to restate Lemma
1 from [7] in the following form:

Lemma 2. Let 0 < € < 1. There exists a hyperbolic
sine/inverse hyperbolic sine rational network R : [—1,1] —
[—1,1] of size O(log(log(1/€))) such that:

[|R — ReLU||oo := maxyc—1 )| R(x) — ReLU(z)| < € (14)

Moreover, no rational network smaller than

Q(log(log(1/€))) can achieve this.

of size



IV. EXPERIMENTS

This section evaluates the effectiveness and the robust-
ness of the proposed non-linear rational activation functions
throughout three experiments of functions approximation (sec-
tion IV-A), a theme identification task of spoken dialogues
transcribed in very noisy conditions from the DECODA
corpus [4] (section IV-B) and an image classification task
from the CIFAR10 corpus (section IV-C). The aim of these
experiments is not to reach state-of-the-art performances, but
to compare the results of the simple architectures introduced
before. As established in [3] and [37], testing original learnable
activation functions for neural networks on small architectures
is common practice, and allows a better comprehension and
insight on the inner workings of learnable activation functions.

A. Function Approximation

This experiment evaluates different neural and non-neural
approaches for functions approximation. Let X!, X2, ..., X100
be a set of 100 real-valued random vectors of size 50 with each
component 0 < X; <10 forall 0 <4 <100 and 0 < j < 50.
We then compute the image of each X* throughout a function
F : F(X") = Y Our approximation tasks (table I) are to
approximate as close as possible each Y with the outputs of
our models Y?. Mgey, and My rar employ feed-forward
neural networks (NN with a Linear layer of size [50, 50] +
Norm layer). The RAF degrees are r, = 5 and r, = 4, with
A =1 (see (8), (9), (11)):

e Mg, 1s a NN and a Relu activation function.

e MyNtRrar employs the same NN but with a RAF.

e Mpar is only made of a norm layer and a RAF.

e M., is composed of a layer norm and the F¢,, RAF.
e M;;,n is a normalized layer with the Fg,, RAF.

o My, sinn employs a norm layer and the Fynn RAF.

TABLE I
FUNCTION APPROXIMATION ARCHITECTURES.

FRAF(XZ‘) or
Freu(X") Fynirar(XY) Fe-’L‘P(XL_) or
00000 00000 Fann(X*) or

Linear Norm

F‘arsinh (Xl>

Linear Linear Linear Norm
(000000) (000000)
X X Xi

Mpeiy MyN+RAF RAF models

Training has been realized over 100 Epochs, with the L
loss function and a learning rate of 0.005. The functions

approximated by our six different models are F(z) = x,
F(z) = L and F(z) = log(z). Table II reports the results
observed during the approximation task of F'(x)

TABLE I
RESULTS FOR THE APPROXIMATION TASK.

Model y=x y= % y =log(x) #param
MEReiu 411.499  79.719 92.015 6,330
MNNi+RrRAF 249793 77.125 68.934 6,369
MRrar 226.851  69.104 47.590 39
Proposed rational activation functions
Mezp 62.750  69.245 29.841 39
Mginh 226.453  69.132 47.219 39
Marsinh 227.237  69.077 47.950 39

The results show first that Mg, that employs a mere NN
with a Relu activation function obtains the worst performance
of all models (error on a simple y = x approximation task
roughly twice larger than for the other models). The best
results observed are those from models employing RAF with
a gain of about 2 points compared to the Relu model. We
can also underline that the model with Relu (Mg.;,,) reaches
a difference among the 100 inputs X* between real outputs
Y? of 411 compared to the same architecture but with RAF
(MyN+rar) with 226. The difference is even larger for the
other functions (92 for Mg, and 47 for the Myn4+rar for
example). Table II also depicts the results obtained by the
proposed non-linear RAF. We can easily see that the proposed
M., obtains the best result for the first experiment (y = x)
with a main reduction of the error with 4 times less than the
MnnN+rar and more than 6 times better than the Mpge;,.
For the other functions, the same observations can be made.
For example, the second function to approximate (y = %), the
three proposed non-linear RAFs obtained roughly the same
results with a main gain compared to Mpg.;, and close to the
Mpgar.

Finally, these approximation functions experiments show
that models with few resources in terms of learnable param-
eters architectures based on rational activation functions can
outperform architectures with way more learnable parameters.
Indeed, the models based on RAF My N+ RAF, ---> Marsinh)
are composed of only 39 learnable parameters, compared to
Mpei,, With 6,330 parameters that represents only 0.61% of
the learnable parameters compared to My n+rar and Mpepy,.
These findings led us to design an image classification task and
a more real-world oriented NLP task.



B. Classification of Noisy Spoken Dialogues

Noisy Spoken Dialogues from the Decoda corpus: This
experiment consists of a conversation classification task of
spoken dialogues from the DECODA corpus depicted in Fig-
ure 2 and concerns the automatic analysis of telephone conver-
sations [15] between an agent and a customer in the call center
of the Paris public transport authority (RATP) [4]. This set
of spoken dialogues is a corpus of agent/customer telephone
conversations in French from the customer care service of
the RATP Paris transportation call-center composed of 1,242
telephone conversations corresponding to 74 hours of signal
transcribed with the Automatic Speech Recognition (ASR)
system LIA- Speeral [25] to keep the noisy context. Each
conversation has been manually transcribed and labelled with
one theme (of 8 possible themes) corresponding to the main
topic. The dataset is split into training(730 conversations),
development(171 conversations) and test(321 conversations)
datasets. LIA-Speeral, a highly error prone ASR system is
employed to keep real life conditions of speech recording to
better study the impact of noisy segments during the learning
process of rational activation functions.

Agent: Hello

Customer: Hello

Agent: Speaking...

Customer: | call you because

| was flned toda but I still
have an
suitable for zone 1 ] | forgot
to use m or

zone 2 ’ Transportatlon
cards

Agent

why they give you a fine not Customer

for a zone issue [...]
Customer: Thanks, bye
Agent: Bye

Fig. 2. Exemple of a dialogue from the DECODA corpus for the SLU
task of theme identification. This dialogue has been labelled by the agent
as “OBJECTS” (Lost & founds objects).

Latent features of corrupted transcriptions from Camem-
BERT: The output of the LIA-Speeral is labelled, highly noisy,
text conversations. The language model used for generating the
embeddings is CamemBERT. CamemBERT is a multi-layer
bidirectional Transformer [38] French language model similar
to RoBERTa that uses whole-word masking and SentencePiece
tokenization [19] instead of WordPiece. RoBERTa [27] is
an English language model which is a modified version of
BERT [13]. CamemBERT has been trained on the french sub-
corpus OSCAR [35] made of 138 GB of raw French text, that
is a significantly smaller corpus than the one employed for
RoBERTa (161 GB of English text). CamemBERT’s parame-
ters have not been fine-tuned during the learning process. [8]
compares the performances of CamemBERT to other French
language models: FlauBERT [20], FrALBERT [9] and XLM-
R [11] on the MEDIA [6] and ATIS-FR [1] corpus, with the

F1 and CER metrics. CamemBERT performs better on the
two corpus for the F1 metric (90% on F1 measure compared
to FlauBert with 89% for example). CamemBERT is used
to encode and extract features from the highly noisy text
conversations given by LIA-Speeral system. The CamemBERT
encoding has a maximum dimension of 512. This is due to
the high number of tokens contained in some conversations.
Every encoded vector is truncated to be of maximum size
512. The extracted features from CamemBERT are of size
[1,z,728], with < 512. As we need all vectors to be of the
same size, padding is applied, so each extracted feature is of
size [1,512,728]. To finish, each extracted feature is flatten
to attain the size of [372736]. These features are then fed
through the different model architectures detailed thereafter
and in table III. Learning was conducted on the training dataset
during 20 Epochs with a learning rate of 2e — 05 and a hyper
parameter A = 0.5 (see (8), (9), (11)).

RAF and non-RAF models configurations: Models have
been evaluated on the development dataset at each Epoch,
and evaluated on the test dataset at the end of training.
The loss function used for training is the cross entropy. The
models evaluated during the theme identification task of highly
corrupted spoken dialogues from the DECODA corpus are
similar to those described in sectionIV-A. The difference is
due to the classification task itself, and therefore, a linear layer
from the input size (372736) to the number of themes (8)
is added with a Softmax on the top of each model M. The
difference between Myni+rar and Mpap is as described
before with Myn+rar has an additional NN (linear layer)
that gives a two linear NN with the first one being of size
[372736, 384] (Linear;) and the second one [384, 8] (Linears)
and all Mpr4r based models only contain a single linear layer
of size [372736, 8] (Linears).

TABLE III
FUNCTION APPROXIMATION ARCHITECTURES.

1
FRelu(Xi) EN"NJrRAF(Xi) FRAF(AXj ) or
SoftMax SoftMax Fop(X t_) or
(000000] [000000)  Finn(X') or
Linear? Linear? Fa’r'sinh(Xi>

Linear Norm

Linear Norm

Linear Norm

Linear; Linear; Linears
(000000]  (000000) (600000
Xi Xz' Xi

Mper MyN{RAF RAF models

Experimental results and discussions: Table IV details
first the loss observed during the learning process of each
model. One can firstly observe that the rational activation
functions perform better than Relu function regarding the loss
of the model for all RAF based models and corroborates claims
from [7] and [14]. Secondly, as the smallest loss is reached by



Mprar by a close margin, table IV also shows that lightweight
neural networks are able to reach performances of models with
more parameters. These findings match with our first function
approximation in subsection IIL. In this experimental context,
models with 2.08% of the total number of parameters of more
heavy neural networks reach better performances in term of
loss observed.

TABLE IV
LOSS ON TRAIN DATASET AND ACCURACY ON THE TRAIN, DEVELOPMENT
AND TEST DATASET.

Model Loss Train  Development  Test
MEReiu 01.388 47% 45% 43%
MnyN+raF  0632e-05  100% 54% 46%
MRpar 02.34e-05  100% 53% 50%

Proposed rational activation functions

Mezp 20e-05  100% 57% 49%
Mainn 40.40e-05 95 % 48% 55%
Maysinh 08.17e-5  100% 56% 53%

Results from table IV also shows that rational activation
functions perform better than Relu function regarding the
accuracy of the model on the training, development or the
test datasets and all models reach about 100% accuracy on
the training dataset with the same hyper-parameters except for
the Mpey, (only 47%). In terms of accuracy, the RAF based
models reach roughly more than 50% of accuracy compared
to the Relu model with a gain of 9%. Even if the models are
quite simple and contain few parameters, one can underline
that RAF based models always outperform the Mp.;, with
the best accuracy reached for the development dataset of 57%
with the M.,, and 55% on the test dataset with the Mgy,
The M, sinp Obtains equivalent accuracies than the other non-
linear RAF for all datasets.

C. Classification of CIFARIO Images

This experiment is an image classification task on the
CIFAR10 dataset [18]. The CIFAR-10 dataset consists of
60,000 color images, each with a resolution of 32x32 pixels
and three RGB color channels. These images are evenly dis-
tributed across 10 distinct object classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck, with 6,000
images per class. The different models compared on this
classification task are detailed below. The hyper-parameters
employed during the training phase are the following: the batch
size was set at 50, the degrees of the RAFs employed are all
settor, = 5and r, = 4, with a A set as 0.9 (see (8), (9), (11)).
Training was conducted across 15 epochs, with a learning
rate set at 5.e~ 4. The loss function used is the cross-entropy.

For this classification task, two types of convolutional models
were tested. The 2_CONV models with two convolutional
layers, and the 1_CONV with only one convolutional layer.
These basic architectures are then split regarding the type of
activation function employed, being ReLU, RAF or the non-
linear RAF (8), (9) and (10). The models’ architectures are
detailed below.

e 2_CONVpe, is a CNN composed of two convolutional
layers followed by one fully connected layer. The
network takes as input a 4-channel image and applies a
first 2D convolutional layer with 6 output channels and
a kernel size of 5, followed by a 2 X 2 max pooling
operation. A second convolutional layer increases
the channel depth to 16, again with a kernel size of
5, followed by max pooling and a ReLU activation
function. The resulting feature maps are flattened into
a 1D vector and passed through a linear layer which
outputs a 10-dimensional vector. ReLU activation is
applied after the linear layer. Figure ?? illustrates this

model.

e 2 CONVRpar employs the same architecture as
2_CONVRer,, but with RAFs in place of ReLU
activations.

e 2_ CONV,,, employs the same architecture as

2_CONVRei, but with Fe, RAFs in place of ReLU
activations.

e 2_ CONVy;,, employs the same architecture as
2_CONVpgep,, but with Fgyn RAFs in place of ReLU
activations.

e 2 CONV,,sinn employs the same architecture as
2_CONVRer,, but with Fyginn RAFs in place of ReLU
activations.

e 1_CONVpe,, is a smaller CNN. It begins with a
2D convolutional layer that processes 4-channel input
images, producing 6 feature maps using a kernel size of
5 and no bias. A 2x2 max pooling operation reduces the
spatial dimensions and passed through a ReLU activation
function. The resulting feature maps are then flattened
into a one-dimensional vector. The flattened features are
then connected to a single fully connected layer with 10
output units. A ReLU activation is applied before the
output. Figure ?? illustrates this model.

e 1_CONVRrar employs the same architecture as
1_CONVpge,, but with RAFs in place of ReLU
activations.

e 1 CONV,,, employs the same architecture as

1_CONVRgey,, but with the Fip, RAFs in place of
ReLU activations.



e 1_CONVy;,, employs the same architecture as
1_CONV ge,, but with the Fg,n RAFs in place of ReLU
activations.

e 1_CONV,,sinn employs the same architecture as
1_CONV geiy, but with the Fyinn RAFs in place of ReLLU
activations.

TABLE V
LOSS, ACCURACY AND NUMBER OF PARAMETERS FOR THE CIFAR10
CLASSIFICATION.

Model Loss Accuracy ~ # parameters
2_CONVReiu 1238.692 56.901% 67,160
2 CONVRar 1108.076 61.204% 67,178
1_CONV Rl 1352.293 52.824% 50,080
1_CONVRaF 1157.579 59.534% 50,098

Proposed rational activation functions

2_CONVezp 1041.097  63.615% 67,178
2_CONVginn 1054060  63.564% 67,178
2_CONVareinn 1101215 61.378% 67,178
1_.CONV.zp  1079.0109  62.61 % 50,098
1_CONV;np 1166147 59.426 % 50,098
1_CONVapsinn 1126435  61.21% 50,098

Results for the CIFAR1O0 classification are reported in Table
V. We first notice that the best performances are reached by the
2_CONV,,, model for the loss value, with 1041.097 points
and for the prediction accuracy, with 63.516%. This represents
a difference in loss value of 197.595 points with the most used
ReLU-based model 2_CONYV g, and a difference in accuracy
of 6,714%.

The superior performances of 2_CONV models were ex-
pected over 1_CONYV due to larger numbers of parameters in
2_CONYV models. Within 2_CONV models, those implement-
ing our custom RAFs outperformed slightly 2. CONVg 4 in
regard to loss and accuracy, and all clearly outperformed the
more established 2_CONV g.;,,. For example, 2_CONV;,p
reached a loss 184,632 points lower and an accuracy 6,663%
higher. The worst scoring 2_CONV model regarding both loss
value and accuracy is 2_CONV g.;y,.

Regarding 1_CONV models, models implementing non-
linear RAFs all outperformed 1_CONVge,, and two of
those non-linear RAFs models outperformed 1_CONVgap.
Both 1_CONV.,, and 1_CONV.nn outperformed
1_CONVRar. The worst scoring 1_CONV model regarding
both loss value and accuracy is 1_CONYV ge;,,. These findings

reinforce our opinion about the better performances of non-
linear RAFs for prediction accuracy and loss minimisation.
Amongst the proposed rational activation functions,
1_CONV_,, yields the best results in both shallow and deep
models. The 1_CONV,,,,, with only 50,098 parameters, out-
performs the deeper 2_CONV g,;,, in both accuracy and loss,
highlighting the efficiency of rational functions in compact
architectures. While 1_CONVy;,,, and 1_CONV,sinn also
surpass ReLU models, their performances vary slightly.
These results, while close, should be compared regarding
the number of parameters: 67,160 for 2_CONVg.;, and
50,098 for 1_CONV,,,, which is approximatively 25.40%
less parameters. These findings suggest that carefully de-
signed activation functions can yield significant performance
improvements, even in models with fewer parameters, and
reaffirm the potential of RAFs in lightweight yet efficient
architectures. Results emphasise the importance of activation
function choice in neural network performance. While deeper
architectures naturally benefit from increased capacity, the
adoption of RAF — especially in smaller models — can yield
competitive or even superior outcomes with fewer parameters.
This highlights RAFs as a promising direction for enhancing
efficiency and generalisation in neural networks architectures.

V. CONCLUSION

Summary. This paper proposes a promising set of acti-
vation functions based on polynomials functions with learn-
able parameters. These activation functions called rational
activation functions (RAF) allow the neural based model to
learn the model parameters alongside the activation function
parameters. The results observed in an approximation task,
a dedicated spoken dialogues classification task as well as
an image classification class with a very small number of
parameters have shown very interesting results compared to
ReLU activation function and the hitherto proposed RAF.
Moreover, the experiments have shown that a mere RAF can
mimic, even overtake, the performance of a neural network
with a ReLU activation function with less parameters (69 for
RAF and 6339 for the NN ReLU). This work confirmed our
assumptions that: 1) lightweight neural networks models based
on RAF can reach equivalent or better performances than more
heavy neural networks, especially regarding loss minimisation;
2) injection of non-linear component on the RAF improves
both the capability of the model to approximate and process
(classification) datasets in controlled and real conditions (im-
perfect spoken dialogues recorded in noisy conditions).
Limitations and Future Works. Future works will also be
related to both theoretical and experimental aspects. Indeed, as
was stated in section III-C the capacity of ReLLU-based neural
networks approximation by functions such as Fgnn, and Fyginn
is derived from the lemma in the appendix of [7]. Regarding
F,, anew demonstration of approximation will be investigated.
Investigations regarding the importance of A and it’s role will
be conducted, as well as making it a learnable parameters.
Experimental works will also be conducted in an attention-
based framework, such as transformers using exponential and



logarithm-based rational activations. Finally, the experiments
have been conducted in a small range of functions and
other non-linear RAF-based activation functions have to be
evaluated. Moreover, the spoken dialogue classification task
contains 8 themes and a small amount of transcribed spokeg,
dialogues, therefore future experiments will be conducted on
larger datasets to further evaluate the proposed approach. [25]
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